Researchers identify PBRM1 gene mutation in one in three patients with common form of renal cancer

In a collaborative project involving scientists from three continents, researchers have identified a gene that is mutated in one in three patients with the most common form of renal cancer.

"This study has begun to unlock the way these latest gene discoveries contribute to cancer," said Professor Bin Tean Teh, M.D., Ph.D., Head of the Van Andel Research Institute Laboratory for Cancer Genetics and the NCSS-VARI Translational Research Laboratory at the National Cancer Centre of Singapore. "And it is to the cancer’s advantage that they sit together. The challenge for the future will be to build a picture of the processes the genes control. That will mean looking beyond the linear DNA code to the chemical interactions that take place at the structural level – at the level of the chromosome."

Importantly, the newly discovered gene, PBRM1, functions as part of a protein complex called SWI-SNF, which also acts to alter the structure of chromatin – further pointing to the importance of genome regulation in renal cancer.

"Our work provides evidence that PBRM1 may affect the processes of cell division in renal cells. Therefore, a defect in this gene could lead to abnormal cellular growth," said Kyle Furge, Ph.D., Head of VARI’s Laboratory of Computational Biology. "For researchers, this discovery is exciting because PBRM1 is a protein that modifies the DNA in the cell. This study is one of the first to show that proteins that modify DNA are frequently mutated in cancer."

The mutations all appear to inactivate a protein that plays a role in remodelling the structure of the genetic material, allowing access of the DNA code to other proteins that can repair damage, control cell growth and turn other genes on and off.

In addition to the PBRM1 mutations, the team also found mutations in a gene called ARID1A in some ccRCC cases. The same gene was identified just weeks ago in clear cell ovarian cancer. The researchers suggest that further larger-scale research will be needed to understand what role this second gene plays in renal cancer.

Source: Van Andel Research Institute

Advertisements
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s